第167章 方程根的个数之探秘

文曲在古 戴建文 1263 字 1个月前

第 167 章 方程根的个数之探秘

数日匆匆而过,学府内的书香依旧弥漫。戴浩文再次踏上那熟悉的讲台,新的知识篇章即将在学子们的期待中缓缓展开。

“诸位学子,前番我们在数列的世界中探寻智慧,今时今日,吾将引领尔等步入方程根的个数这一神秘领域。”戴浩文声音朗朗,目光扫过一众学子。

众学子正襟危坐,眼神中满是对新知识的渴求和好奇。

戴浩文轻挥衣袖,于黑板之上写下一道方程:“x2 - 5x + 6 = 0。”

“吾等先观此简单之例,求解方程之根,诸位当如何为之?”戴浩文问道。

有学子起身答道:“先生,可用因式分解之法,化为 (x - 2)(x - 3) = 0,得根为 2 与 3。”

戴浩文微微颔首:“善。然今所论者,非仅求其根,而在探究此类方程根之个数。”

他继而说道:“若方程为二次方程 ax2 + bx + c = 0,其判别式 Δ = b2 - 4ac 便为关键。当 Δ > 0 时,方程有两个不同之实根;当 Δ = 0 时,方程有两个相同之实根;当 Δ < 0 时,方程无实根。”

众学子听闻,纷纷低头记录。

戴浩文又举例道:“如方程 x2 + 2x + 1 = 0,其中 a = 1,b = 2,c = 1,Δ = 22 - 4×1×1 = 0,故而此方程有两个相同实根,即为 -1。”

为使学子们更明其理,戴浩文令学子们各自出题,相互求解判别式并判断根的个数。一时间,课堂内讨论之声四起,学子们或蹙眉思索,或欣然交流。

待众人稍有领悟,戴浩文话锋一转:“二次方程之理,诸位已略知一二。然方程之形多样,诸如三次方程、四次方程,乃至更高次方程,又当如何探究其根之个数?”

众学子面面相觑,皆感困惑。

戴浩文微笑道:“莫急。吾先以三次方程为例。”他在黑板上写下方程:“x3 - 6x2 + 11x - 6 = 0。”

“求解此类方程,需综合运用因式分解、试根等法。吾先试 x = 1,代入方程,发现等式成立,故 x - 1 为其一个因式。”戴浩文边说边演示。

经过一番推演,方程化为 (x - 1)(x - 2)(x - 3) = 0,“由此可知,此方程有三个实根,分别为 1,2,3。”