dw/dt=k(w-c)
代入上述公式,则有
c=∫_0~t wf(w) k(w-c)dt
1=∫_0~t f(w) k(w-c)dt
S=∫_0~T f(w) k(w-c)dt
而
w-c=(w0-c)exp(kt)
将其代入可得
c=∫_0~t wf(w) k(w0-c)exp(kt) dt =∫_0~t wf(w) (w0-c) d(exp(kt))
1=∫_0~t f(w) k(w0-c)exp(kt) dt =∫_0~t f(w) (w0-c) d(exp(kt))
S=∫_0~T f(w) k(w0-c)exp(kt) dt =∫_0~T f(w) (w0-c) d(exp(kt))
设
p=exp(kt)
则有
c=∫_1~p wf(w) (w0-c) dp
1=∫_1~p f(w) (w0-c) dp
S=∫_1~exp(kT) f(w) (w0-c) dp